Puntos cuánticos de carbono a partir de quitosano: principales rutas de síntesis y aplicaciones
DOI:
https://doi.org/10.5281/zenodo.7761810Palabras clave:
Puntos cuánticos de carbono, Quitosano, NanomaterialesResumen
Los puntos cuánticos de carbono son una nueva clase de nanomateriales fluorescentes, con propiedades como fotoluminiscencia, alta solubilidad, baja toxicidad y biocompatibilidad favorable. Son útiles para aplicaciones en biomedicina, sensores, células solares y fotocatálisis, entre otras. La síntesis de puntos cuánticos utilizando quitosano como fuente de partida se convierte en el centro de interés de los investigadores debido al bajo coste y la disponibilidad a gran escala de este material. Otro punto positivo del uso del quitosano es la posibilidad de reutilizar recursos naturales con el potencial de reducir los contaminantes y sus impactos ambientales. Desde el punto de vista de los métodos de síntesis, destaca el método hidrotérmico, por ser una metodología sencilla y de bajo coste, que emplea condiciones de temperatura moderada y tiempo de síntesis relativamente bajo. Entre las principales aplicaciones de los puntos cuánticos basados en quitosano, las aplicaciones de bioimagen y biosensores son las más reportadas en la literatura.
Citas
Abreu, F. O. M. da S. (2008). Síntese e caracterização de hidrogéis biodegradáveis à base de quitosana com morfologia controlada com potencial aplicação como carreadores de fármacos. https://lume.ufrgs.br/handle/10183/15030
Azevedo, V. V. C. et al. (2007). Quitina e Quitosana: aplicações como biomateriais. Revista Eletrônica de Materiais e Processos,2(3).
Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: Emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744. https://doi.org/10.1002/anie.200906623
Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., & Titirici, M. (2015). Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angewandte Chemie International Edition, 54(15), 4463–4468. https://doi.org/10.1002/anie.201409290
Chowdhuri, A. R., Singh, T., Ghosh, S. K., & Sahu, S. K. (2016). Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a nanoprobe for ph sensitive targeted anticancer drug delivery. ACS Applied Materials & Interfaces, 8(26), 16573–16583. https://doi.org/10.1021/acsami.6b03988
Chowdhury, D., Gogoi, N., & Majumdar, G. (2012). Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2(32), 12156. https://doi.org/10.1039/c2ra21705h
Dutta, P.K., Dutta, J., and Tripathi, V.S. (2004) Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific & Industrial Research, 63, 20-31.
http://nopr.niscair.res.in/handle/123456789/5397
Gomes, M. F., Gomes, Y. F., Moriyama, A. L. L., Barros Neto, E. L., & Souza, C. P. (2019). Design of carbon quantum dots via hydrothermal carbonization synthesis from renewable precursors. https://doi.org/10.1007/s13399-019-00387-4
Gong, P., Sun, L., Wang, F., Liu, X., Yan, Z., Wang, M., Zhang, L., Tian, Z., Liu, Z., & You, J. (2019). Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chemical Engineering Journal, 356, 994–1002. https://doi.org/10.1016/j.cej.2018.09.100
Guo, W., Pi, F., Zhang, H., Sun, J., Zhang, Y., & Sun, X. (2017). A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors and Bioelectronics, 98, 299–304. https://doi.org/10.1016/j.bios.2017.06.036
Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W., Chen, J., Wang, Q., He, Y., Zhang, W., & Bao, X. (2014). A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosensors and Bioelectronics, 52, 277–280. https://doi.org/10.1016/j.bios.2013.09.003
Kandra, R., & Bajpai, S. (2020). Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arabian Journal of Chemistry, 13(4), 4882–4894. https://doi.org/10.1016/j.arabjc.2019.12.010
Kumar, A., Chowdhuri, A. R., Laha, D., Chandra, S., Karmakar, P., & Sahu, S. K. (2016). One-pot synthesis of carbon dot-entrenched chitosan-modified magnetic nanoparticles for fluorescence-based Cu 2+ ion sensing and cell imaging. RSC Advances, 6(64), 58979–58987. https://doi.org/10.1039/C6RA10382K
Li, J., He, Z., Guo, C., Wang, L., & Xu, S. (2014). Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging. Journal of Luminescence, 145, 74–80. https://doi.org/10.1016/j.jlumin.2013.06.036
Li, L., Zheng, X., Huang, Y., Zhang, L., Cui, K., Zhang, Y., & Yu, J. (2018). Addressable tio 2 nanotubes functionalized paper-based cyto-sensor with photocontrollable switch for highly-efficient evaluating surface protein expressions of cancer cells. Analytical Chemistry, 90(23), 13882–13890. https://doi.org/10.1021/acs.analchem.8b02849
Liang, Z., Kang, M., Payne, G. F., Wang, X., & Sun, R. (2016). Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Applied Materials & Interfaces, 8(27), 17478–17488. https://doi.org/10.1021/acsami.6b04826
Machado, C. E., Vieira, K. O., Ferrari, J. L., & Schiavon, M. A. (2015). Pontos quânticos de carbono: Síntese química, propriedades e aplicaçoes. Revista Virtual de Química, 7(4), 1306–1346. https://doi.org/10.5935/1984-6835.20150073
Moradi, S., Sadrjavadi, K., Farhadian, N., Hosseinzadeh, L., & Shahlaei, M. (2018). Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. Journal of Molecular Liquids, 259, 284–290. https://doi.org/10.1016/j.molliq.2018.03.054
Mirtchev, P., Henderson, E. J., Soheilnia, N., Yip, C. M., & Ozin, G. A. (2012). Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO 2 solar cells. J. Mater. Chem., 22(4), 1265–1269. https://doi.org/10.1039/C1JM14112K
Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
Sarkar, T., Bohidar, H. B., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International Journal of Biological Macromolecules, 109, 687–697. https://doi.org/10.1016/j.ijbiomac.2017.12.122
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. https://doi.org/10.1021/ja040082h
Zhan, J., Peng, R., Wei, S., Chen, J., Peng, X., & Xiao, B. (2019). Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan. ACS Omega, 4(27), 22574–22580. https://doi.org/10.1021/acsomega.9b03318
Zhang, X., Jiang, M., Niu, N., Chen, Z., Li, S., Liu, S., & Li, J. (2018). Natural-product-derived carbon dots: From natural products to functional materials. ChemSusChem, 11(1), 11–24. https://doi.org/10.1002/cssc.201701847
Publicado
Cómo citar
Número
Sección
ARK
Licencia
Derechos de autor 2020 (CC BY 4.0)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.