Quantum carbon points from chitosan: main synthesis ways and applications

Authors

DOI:

https://doi.org/10.5281/zenodo.7761810

Keywords:

Carbon Quantum Dots, Chitosan, Nanomaterials

Abstract

Carbon dots are a new class of fluorescent nanomaterials, with properties such as photoluminescence, high solubility, low toxicity, and favorable biocompatibility. They are useful for applications in biomedicine, sensors, solar cells, and photocatalysis, among others. The synthesis of quantum dots using chitosan as a starting source becomes the focus of interest for researchers due to the low cost and large-scale availability of this material. Another positive aspect of using chitosan is the possibility of reusing natural resources with the potential to reduce pollutants and their environmental impacts. As regards the synthesis methods, the hydrothermal method stands out, as it is a simple and low-cost methodology, which uses moderate temperature conditions and relatively low synthesis time. Among the main applications of chitosan-based quantum dots, applications of bioimaging and biosensors are the most reported in the literature.

Author Biographies

Bruno Peixoto de Oliveira, Universidade Federal do Cariri

Doutorando no Programa de Ciências Naturais na Universidade Estadual do Ceará. Trabalha como Professor Assistente da Universidade Federal do Cariri, atuando principalmente nos seguintes temas: síntese de nanopartículas, carbon dots e Ensino de Química. Mestre em Química (área de concentração Físico-Química) pela Universidade Federal do Ceará (2014). Graduado em Licenciatura em Química pela Universidade Estadual do Ceará (2009)

Nathália Uchôa de Castro Bessa, State University of Ceará

Atualmente mestranda em Ciências Naturais no programa de pós graduação em ciências naturais (PPGCN/UECE). Graduada em Química pela Universidade Estadual do Ceará. Experiência como bolsista CNPQ no Laboratório de Química dos Polímeros Naturais trabalhando com quitosana para a produção de pontos quânticos de carbono

Joice Farias do Nascimento, State University of Ceará

Atualmente é Mestrada em Ciências Naturais pelo Programa de Pós-graduação em Ciências Naturais (PPGCN-UECE). Possui graduação em Licenciatura Plena em Química pela Universidade Estadual do Ceará (2020.2).

Flávia Oliveira Monteiro da Silva Abreu, State University of Ceará

Possui graduação em Bacharelado em Quimica pela Universidade Federal do Rio Grande do Sul (2000) e graduação em Licenciatura em Química pela Universidade Federal do Rio Grande do Sul (UFRGS) (2005). Possui Mestrado (2004) e Doutorado (2008) em Engenharia, com área de Concentração em Ciência e Tecnologia dos Materiais pelo programa de Pós-Graduação em Engenharia de Minas, Metalúrgia e Materiais (PPGEM/UFRGS).

References

Abreu, F. O. M. da S. (2008). Síntese e caracterização de hidrogéis biodegradáveis à base de quitosana com morfologia controlada com potencial aplicação como carreadores de fármacos. https://lume.ufrgs.br/handle/10183/15030

Azevedo, V. V. C. et al. (2007). Quitina e Quitosana: aplicações como biomateriais. Revista Eletrônica de Materiais e Processos,2(3).

Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: Emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744. https://doi.org/10.1002/anie.200906623

Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., & Titirici, M. (2015). Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angewandte Chemie International Edition, 54(15), 4463–4468. https://doi.org/10.1002/anie.201409290

Chowdhuri, A. R., Singh, T., Ghosh, S. K., & Sahu, S. K. (2016). Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a nanoprobe for ph sensitive targeted anticancer drug delivery. ACS Applied Materials & Interfaces, 8(26), 16573–16583. https://doi.org/10.1021/acsami.6b03988

Chowdhury, D., Gogoi, N., & Majumdar, G. (2012). Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2(32), 12156. https://doi.org/10.1039/c2ra21705h

Dutta, P.K., Dutta, J., and Tripathi, V.S. (2004) Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific & Industrial Research, 63, 20-31.

http://nopr.niscair.res.in/handle/123456789/5397

Gomes, M. F., Gomes, Y. F., Moriyama, A. L. L., Barros Neto, E. L., & Souza, C. P. (2019). Design of carbon quantum dots via hydrothermal carbonization synthesis from renewable precursors. https://doi.org/10.1007/s13399-019-00387-4

Gong, P., Sun, L., Wang, F., Liu, X., Yan, Z., Wang, M., Zhang, L., Tian, Z., Liu, Z., & You, J. (2019). Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chemical Engineering Journal, 356, 994–1002. https://doi.org/10.1016/j.cej.2018.09.100

Guo, W., Pi, F., Zhang, H., Sun, J., Zhang, Y., & Sun, X. (2017). A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors and Bioelectronics, 98, 299–304. https://doi.org/10.1016/j.bios.2017.06.036

Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W., Chen, J., Wang, Q., He, Y., Zhang, W., & Bao, X. (2014). A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosensors and Bioelectronics, 52, 277–280. https://doi.org/10.1016/j.bios.2013.09.003

Kandra, R., & Bajpai, S. (2020). Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arabian Journal of Chemistry, 13(4), 4882–4894. https://doi.org/10.1016/j.arabjc.2019.12.010

Kumar, A., Chowdhuri, A. R., Laha, D., Chandra, S., Karmakar, P., & Sahu, S. K. (2016). One-pot synthesis of carbon dot-entrenched chitosan-modified magnetic nanoparticles for fluorescence-based Cu 2+ ion sensing and cell imaging. RSC Advances, 6(64), 58979–58987. https://doi.org/10.1039/C6RA10382K

Li, J., He, Z., Guo, C., Wang, L., & Xu, S. (2014). Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging. Journal of Luminescence, 145, 74–80. https://doi.org/10.1016/j.jlumin.2013.06.036

Li, L., Zheng, X., Huang, Y., Zhang, L., Cui, K., Zhang, Y., & Yu, J. (2018). Addressable tio 2 nanotubes functionalized paper-based cyto-sensor with photocontrollable switch for highly-efficient evaluating surface protein expressions of cancer cells. Analytical Chemistry, 90(23), 13882–13890. https://doi.org/10.1021/acs.analchem.8b02849

Liang, Z., Kang, M., Payne, G. F., Wang, X., & Sun, R. (2016). Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Applied Materials & Interfaces, 8(27), 17478–17488. https://doi.org/10.1021/acsami.6b04826

Machado, C. E., Vieira, K. O., Ferrari, J. L., & Schiavon, M. A. (2015). Pontos quânticos de carbono: Síntese química, propriedades e aplicaçoes. Revista Virtual de Química, 7(4), 1306–1346. https://doi.org/10.5935/1984-6835.20150073

Moradi, S., Sadrjavadi, K., Farhadian, N., Hosseinzadeh, L., & Shahlaei, M. (2018). Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. Journal of Molecular Liquids, 259, 284–290. https://doi.org/10.1016/j.molliq.2018.03.054

Mirtchev, P., Henderson, E. J., Soheilnia, N., Yip, C. M., & Ozin, G. A. (2012). Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO 2 solar cells. J. Mater. Chem., 22(4), 1265–1269. https://doi.org/10.1039/C1JM14112K

Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

Sarkar, T., Bohidar, H. B., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International Journal of Biological Macromolecules, 109, 687–697. https://doi.org/10.1016/j.ijbiomac.2017.12.122

Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. https://doi.org/10.1021/ja040082h

Zhan, J., Peng, R., Wei, S., Chen, J., Peng, X., & Xiao, B. (2019). Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan. ACS Omega, 4(27), 22574–22580. https://doi.org/10.1021/acsomega.9b03318

Zhang, X., Jiang, M., Niu, N., Chen, Z., Li, S., Liu, S., & Li, J. (2018). Natural-product-derived carbon dots: From natural products to functional materials. ChemSusChem, 11(1), 11–24. https://doi.org/10.1002/cssc.201701847

Published

2020-06-20

How to Cite

Oliveira, . B. P. de ., Bessa, N. U. de C. ., Nascimento, J. F. do ., & Abreu, F. O. M. da S. . (2020). Quantum carbon points from chitosan: main synthesis ways and applications. Scientific Collection Magazine, 4(7), 01–09. https://doi.org/10.5281/zenodo.7761810

ARK